Initial-boundary Value Problems for Nonlinear Pseudoparabolic Equations in a Critical Case

نویسنده

  • ELENA I. KAIKINA
چکیده

We study nonlinear pseudoparabolic equations, on the half-line in a critical case, ∂t(u− uxx)− αuxx = λ|u|u, x ∈ R, t > 0, u(0, x) = u0(x), x ∈ R, u(t, 0) = 0, where α > 0, λ ∈ R. The aim of this paper is to prove the existence of global solutions to the initial-boundary value problem and to find the main term of the asymptotic representation of solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space

In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.

متن کامل

Explicit Multistep Methods for Nonstiff Partial Differential Equations

We approximate the solution of initial boundary value problems for equations of the form Au′(t) = B(t, u(t)), t ∈ [0, t?]. A is a linear, selfadjoint, positive definite operator on a Hilbert space (H, (·, ·)) and B is a possibly nonlinear operator. We discretize in space by finite element methods and for the time discretization we use explicit linear multistep schemes. We derive optimal order e...

متن کامل

Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

متن کامل

Chebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory

In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...

متن کامل

Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations

This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007